
Investigations into Missing Values Imputation Using
Random Forests for Semi-supervised Data

Tsunenori Ishioka
The National Center for University Entrance Examinations

2-19-23 Komaba, Meguro-ku
Tokyo, Japan

tunenori@rd.dnc.ac.jp

ABSTRACT
This paper presents a revised procedure that imputes miss-
ing values by using random forests on semi-supervised data.
The method has a feature that not only allows missing data
to be found in a response variable but in a predictive vari-
able, and furthermore, it can now deal with any types of
data, i.e., numerical values, categories and categories with
an order. By evaluating this method using Titanic data
and eleven UC Irvine repository datasets, we found that our
method performed fairly well, and a method of naive median
imputation was also suitable in these cases.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis; I.2.6 [Artificial Intelligence]: Learning—analogies

General Terms
Algorithms

Keywords
Ensemble learning, data imputation, missing data, R, rfIm-
pute, UCI machine learning repository

1. INTRODUCTION
We often see that missing values are included when analyz-

ing real-world data. Some information, especially in wireless
environments, tends to get lost. The easiest way of treating
missing values is to “remove” them. Another way is to make
a reasonable inference from the observations to account for
the missing data. The missingness, i.e., the randomness of
missing data, can be divided into three classes [14]: (1) miss-
ing completely at random (MCAR), (2) missing at random
(MAR), and (3) not missing at random (NMAR). We of-
ten use the full information maximum likelihood method
(FIML) [6] in the case of (1) or (2). We usually introduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2014, 4-6 December, 2014, Hanoi, Vietnam.
Copyright 2014 ACM 978-1-4503-1306-3/12/12 ...$15.00.

auxiliary variables in the case of (3), and can get the model
closer to an assumption of MAR.

If labeled or response variable data are missing in the is-
sue of class classification or regression, the dataset is called
“semi-supervised data.” Since the unlabeled data are rela-
tively easy to obtain, techniques that make use of unlabeled
data for training — typically a small amount of labeled data
with a large amount of unlabeled data, have the potential
to produce accurate estimates.

The predictor as well as response variable naturally in-
clude missing values. Note that FIML cannot handle semi-
supervised data that include missing values in any predic-
tors; it can only treat supervised data that include missing
predictors. On the contrary, many semi-supervised learning
(SSL) methods, such as low-density separation approaches
[4] and graph-based methods [16] and so on [18], only allow
responses missingness under natural conditions (Table 1).

Here, we will impute these missing values by using ran-
dom forests. Random forests [1] is well-known as a substan-
tial modification of bagging techniques, and is scalable for
high dimensional data. It builds a large collection of de-
correlated trees and then averages them. It is mainly used
as an accurate classifier or regression tree. The latest For-
tran77 code by Breiman and Cutler [3] is Version 5.1, dated
2004. Version 4 contains modifications and major additions
to Version 3.3, and it allows missing predictor values to be
replaced through two options [2]. The first is “missquick”
(Ver. 4), which replaces all missing values by the median of
the non-missing values in their column, if they are real, or by
the most numerous value in their column if they are categor-
ical. The second is “missright” (Ver. 5). This option starts
with “missquick” but then iterates by using proximities and
does an effective replacement even with a large amount of
missing data. Missing values are represented by a proximity
weighted sum over the non-missing values.

Liaw implemented these ideas in a statistical environ-
ment R [13], calling them “na.roughfix” and “rfImpute” [12].
These R functions unfortunately cannot be used in semi-
supervised cases [5]. Therefore, we extended their ideas to
semi-supervised data [11], and presented the procedure in R.
This starts with the rough imputation of the missing data
(“na.roughfix”) and repeatedly obtains new proximities of
the semi-supervised data by running random forests.

Table 1 summarizes the availability of various methods
whose variables allow their missing values. FIML [6], which
is often shortened as the maximum likelihood method (ML),
only allows predictors missingness. SSL methods[4, 16, 18]
are completely opposite to FIML. Random forests [1] only

Table 1: Should missing data be allowed?
Methods Predictors Response var.
FIML(ML) [6] Available Not available
SSL methods[4, 16, 18] Not available Available
Random forests [1] Not available Not available
Random forests [3] Available Not available
RfImpute [12] Available Not available
Our procedure [11] Available Available

operates in complete data. The latest random forests [3] and
rfImpute [12] can impute the missing predictors. In all, only
our method [11] can handle the missing data in any of the
predictors and response variables, and it operates normally.

We found in our previous research [11] that our method
had higher rates of correct classification using a spam dataset
collected at Howlett-Packard Labs, and Edgar Anderson’s
iris data. The former dataset classifies 4601 e-mails as spam
or non-spam, and has 58 variables indicating the frequency
of certain words and characters in the e-mail. The latter
provides measurements in centimeters of the variables sepal
length and width and petal length and width, for 50 flowers
from each of three species of iris. The species are “iris se-
tosa,”“versicolor,” and “virginica”. That is, the iris dataset
has 150 observations and five variables. Both datasets are
typical test cases for many classification techniques in ma-
chine learning.

However, neither of these two datasets includes intrinsic
missing values. The missing values were created by drop-
ping their original values artificially in order to evaluate the
classification. In addition, all the predictor or explanatory
variables of these datasets are numeric. The predictors in
some cases contain categorical and/or ordered categorical
variables besides numeric ones. Therefore, we extended our
procedure so that the variables of any types could be dealt
with.

In this research, we evaluate the properly imputing miss-
ing values of intrinsic missing datasets stored at the UC
Irvine (UCI) Repository of Machine Learning Databases.
Section 2 summarizes the elements of a technique that im-
putes the missing values for semi-supervised data. Section 3
explains the revised procedure for imputing them. Section 4
presents the results obtained with the Titanic dataset, and
11 examples stored at the UCI Repository. All datasets con-
tain intrinsic missing values. Section 5 concludes the paper.

2. RFIMPUTE

2.1 Proximity measure
The (i, j) element of the proximity matrix produced by

a random forest is the fraction of trees in which elements i

and j fall on the same terminal node. “Similar” observations
should intuitively be on the same terminal nodes more often
than dissimilar ones. The proximity matrix can be used to
identify structures in the data and used for semi-supervised
learning with random forests.

When treating random forests, we should note that each
tree uses a part of input variables. Suppose L represents
input variables, and number ` � L is specified such that at
each node, ` variables are selected at random out of L. Since
the growth of the tree does not depend on the number of

cases but on the number of variables (`), no tree will increase
in size. Therefore, the probability of falling on the same
terminal node will not become very small. It is appropriate
to use this as an index of the degree of proximity.

2.2 R procedure
Missing values are indicated by ‘NA’s in R [13]. A function

returning a result of random forests is the “randomForest,”
developed by Liaw [12]. The algorithm starts by imputing
NAs by using “na.roughfix.” Then, “randomForest” is called
with the completed data. The proximity matrix output from
the “randomForest” is used to update the imputation of the
NAs. The imputed value for continuous predictors is the
weighted average of the non-missing observations, where the
weights are the proximities. The imputed value for cate-
gorical predictors, is the category with the largest average
proximity. This process is iterated a few times.

3. REVISED PROCEDURE

3.1 Missing value replacement for training set
Our procedure, as well as Liaw’s “rfImpute,” involves two

ways of replacing missing values. The first way is fast. If
the mth variable is not categorical, the method computes the
median of all values of this variable in class j; then it uses
this value to replace all missing values of the mth variable in
class j. If the mth variable is categorical, the replacement
is the most frequent non-missing value in class j. These
missing values are replaced or filled by “na.roughfix.”

The second way of replacing missing values is computa-
tionally more expensive but outperforms the first, even with
large amounts of missing data. It begins by roughly and in-
accurately filling in the missing values. The key technique is
not to estimate the missing values on the basis of all proxim-
ities but the non-missing proximities. Then, it runs a forest
procedure and computes the proximities.

If x(n, m) is a missing continuous value, we estimate its
fill as an average over the non-missing values of the mth
variables weighted by the proximities between the nth case
and the other cases. If it is a missing categorical variable,
we replace it by using the most frequent non-missing value,
where the frequency is weighted by proximity.

In summary, when there is a missing continuous value, we
use

bx(n, m) =

X

i6=n;i∈non-missing

prox(i, n)x(i, m)

X

i6=n;i∈non-missing

prox(i, n)
, (1)

where prox(·, ·) is the proximity.
When there is a missing categorical variable, we use

bx(n, m) = argmax
Cm

X

i6=n

i∈non-missing

prox(i, n), (2)

where Cm means mth categorical variables.
Now, it is possible to iteratively construct a forest again

by using these newly filled-in values, find new fills, and re-
iterate. However we cannot do this. We found through
experience that the iterations did not improve performance.

The main reason we only use non-missing data in (1) is
that the imputation of missing data is not stable. Even if
the proximities to the target are rather close to one (=1),

the proximity associated with missing data would not been
reliable. Our numerical investigations revealed that our pro-
cedure using non-missing data is better than using all data.
The same thing occurred in (2).

3.2 Algorithm
Semi-supervised learning ought to treat missing response

variable (y) as a training data set. Since our method is to
immediately impute missing data, both predictor variables
(x) and response variable (y) can include missing values
(Fig.1: Step 0). Semi-supervised learning, which includes
large amounts of missing predictor variables (x) and miss-
ing response variables (y), has the potential to considerably
cover real world data. A good method of semi-supervised
learning yields many benefits. Our procedure is outlined in
Figure 1.

NA

NA

NA

NA
NA
NA
NA

NA

NA

x y

}

}
Labeled

Unlabeled

(Step 0) Initial state

NA

NA

NA

NA
NA
NA
NA

NA

NA

x y

}

}
Labeled

Unlabeled

(Step 1a) Imputation of predictor variables (x)

NA

NA

NA

NA
NA
NA
NA

NA

NA

x y

}

}
Labeled

Unlabeled

(Step 1b) Imputation of response variable (y) based on
labeled data

NA

NA

NA

NA
NA
NA
NA

NA

NA

x y

}

}
Labeled

Unlabeled

(Step 2 and 3) Replace missing predictor variable (x)

Figure 1: Procedure for missing (NA) data imputa-
tion

(Step 0): There are labeled data and unlabeled data; NA
indicates missing data.

(Step 1): By starting with a rough imputation of miss-
ing predictor variables (x), we estimate the missing
response variable (ŷ) by running the random forests
algorithm.

(Step 2): We replace the missing predictor variables (x̂) by
using the proximities between cases and estimate the
response variable (ŷ).

(Step 3): If the imputed values (x̂) converge, we output
them (x̂, ŷ). Otherwise, we repeat Step 2.

We call this procedure “rfImput.smsupvsd,” which means
“an imputation method using random forests for semi-
supervised learning.” We found that Step 3 did not produce
significant improvements. The procedure has been devel-
oped by our previous work [11]. Minor changes to the pro-
gram are made for ill conditions.

3.3 R Tips to handle any types of data
A program that calculates the spatial distance between

two vectors to any data types (numeric, categorical, and or-
dered categorical) needed to be created to apply our method
to all data types.

The program code in R is described below:

Description:

Return relative distance between ‘x.impute’ to ‘x.org’
Arguments:
x.impute: imputed data

x.org: original data
dist.rel <- function (x.impute, x.org){

ncol.x <- length(x.org)
x.abs.org <- matrix(abs(as.numeric(unlist(x.org))), ncol=ncol.x)

max.x <- apply(x.abs.org, 2, max) # normalize the features size
‘x.impute’ and ‘x.org’ may include factor elements
if (FALSE){ # available for only numeric

diff.x <- (x.impute - x.org) / max.x # normalize
diff.rel <- sum(diff.x^2) / sum((x.org / max.x)^2)

}else{
mat.x.impute <- matrix(as.numeric(unlist(x.impute)), ncol=ncol.x)
mat.x.org <- matrix(as.numeric(unlist(x.org)), ncol=ncol.x)

max.numx <- as.numeric(unlist(max.x))
diff.x <- sweep((mat.x.impute - mat.x.org), 2, max.numx, FUN="/")

size.org <- sweep(mat.x.org, 2, max.numx, FUN="/")
diff.rel <- sum(diff.x^2) / sum(size.org^2)

}
return(diff.rel)

}

The former code is saved at the portion of“if (FALSE){ },”
which was effective for the numerical data type. Now, the
portion by “else{ }” operates and fulfills the conditions we
required. The key technique is transforming any types of
objects to numeric values using functions of “unlist” and
“as.numeric.”

Other tips are reading missing values indicated by ‘NA’
or ‘?’, not as a character string but as the missing data of
R. For that purpose, we read the given data as follows.

x <- read.csv(filename, na.strings=c("?","","NA"))

Data types other than those missing are held as they are by
using this.

All related R programs can be viewed at http://www.rd.
dnc.ac.jp/~tunenori/rfImpute.html .

4. APPLICATION EXAMPLES

4.1 Titanic3 Datasets indicating survival sta-
tus

Thomas Cason of the University of Virginia has greatly
updated and improved the ‘titanic’ data frame using the
Encyclopedia Titanica and created a new dataset called ‘ti-
tanic3.’ This data frame describes the survival status of
individual passengers on the Titanic [9]. It is available at
[10].

The data frame has 1309 observations on the following 14
variables:

pclass A factor with levels 1st, 2nd, and 3rd

survived Survival (0 = No; 1 = Yes)

name Name

sex A factor with levels female and male

age Age in years

sibsp Number of siblings/spouses aboard

parch Number of parents/children aboard

ticket Ticket number

fare Passenger fare

cabin Cabin

embarked A factor with levels Cherbourg, Queenstown, and
Southampton

boat Lifeboat

body Body identification number

home.dest Home/Destination

As the boat number immediately indicated whether some-
one had survived or not, it was removed from the object of
analysis. Moreover, since these four of name, ticket, body,
and home.dest (home/destination), do not involve whether
someone had survived or not, we did not use these.

We totally used survived as a response variable and eight
remaining variables, i.e., pclass, sex, age, sibsp, parch,
fare, cabin, embarked, as predictor variables.

Now, we must be cautious of two things here.

1. There are three types of predictor variables: numeric,
categorical and ordered categorical variables. Age and
fare are numeric. Sex, cabin, and embarked are
categorical. Pclass, sibsp, and parch are ordered
categorical, which are indicated as integers.

Random forests can deal with these types of data, i.e.,
a mixture of numerical and categorical data, without
special treatment.

2. Missingness does not occur completely at random. While
the total average of the missing ratio is 10.9%, the
missing ratio of cabin is 77.5% (1014/1309). The ratio
of passengers expressed as a percentage without miss-
ingness is 79.4% (1039/1309). That is, missingness is
inclined toward a specific variable.

To evaluate the performance of our “rfImput.smsupvsd,”
we compared it with two methods.

1. Median Imputation: “RandomForest” does not work
for any y that includes missing responses. Hence, we
filled missing x by replacing the column median, and
configured the forest model for non-missing response
cases (y) by using “RandomForest.” Using this model,
we estimated the response values (ŷ) for their missing
y.

0.1 0.2 0.3 0.4 0.5 0.6

0.
70

0.
72

0.
74

0.
76

0.
78

0.
80

Rate of labeled data in training data

R
at

e
of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

rfImput.smsupvsd
impute.median
rm.NAs

Figure 2: Correct classification for semi-supervised
titanic data

2. Missing data elimination: We started to eliminate the
data containing any missing x and missing y. Us-
ing this complete data, we built the “RandomForest”
model. Therefore, no unlabeled data were used.

Semi-supervised as well as supervised learning predict or
estimate y from x. Therefore, we used precision, i.e., the
rate of correct classifications, as a criterion to evaluate the
performance of learners.

We conducted 150 runs of 10-fold stratified cross-validation
in this dataset. That is, 10% (= p) of the original data were
put aside as the testing set to evaluate the performance of
the learning algorithm. The remaining 90% (= 1 − p) of
data were divided into labeled and unlabeled data, accord-
ing to a pre-defined percentage of labeled data (= q). This
data-splitting setting is very common [8]. The q was set in
our experiments, to be from 10% to 60%. Therefore, when
q = 0.2, 10% of the data were kept as the testing set, 20% of
the 90% data were randomly sampled as labeled data, while
the remaining 80% of the 90% data were saved as unlabeled
data.

Figure 2 plots the results for the three methods. A larger
value on the vertical axis indicates better performance. A
value of one (=1) means that all missing y have correctly
been predicted. The horizontal axis shows the rate of the
labeled data (q).

Note that the performance of the method of eliminating
missing data is overestimated, because this method uses just
complete data to evaluate performance, while the other two
methods’ use testing data containing the original missing
data.

In general, the higher the training data rate on the hor-
izontal axis is, the higher the value on the vertical axis
becomes. Because the missing data are randomized, the
lines on the graph do not always increase monotonously.
Our method (“rfImput.smsupvsd”) and median imputation
method (“impute.median) are excellent on the same slope.
The missing elimination method (“rm.NAs”) is the worst be-
cause observations to build the model are fairly small.

Table 2: UCI Datasets including missing data

Name
%

Missing
#

Classes
Attribute types

#
Instances

#

Attributes
Year

Pittsburgh bridges 5.94 6 Categorical, integer 108 13 1990

Credit approval 0.61 2 Categorical, integer, real 690 15

Cylinder bands 5.00 2 Categorical, integer, real 512 39 1995

Dermatology 0.06 6 Categorical, integer 366 33 1998

Echocardiogram 7.69 2 Categorical, integer, real 132 12 1989

Hepatitis 5.39 2 Categorical, integer, real 155 19 1988

Horse colic 13.81 2 Categorical, integer, real 368 27 1989

Lung cancer 0.27 3 Integer 32 56 1992

Mushroom 1.32 3 Categorical 8124 22 1987

Post-operative patient 0.37 2 Categorical, integer 90 8 1993

Soybean (Large) 6.44 19 Categorical 307 35 1988

4.2 UCI Repository Datasets
The next examples are well-known UCI Repository datasets

[15], which are often used in the field of machine learning.
We used all datasets whose size is not huge and that con-
tains missing data. Eleven datasets correspond to the follow-
ing states: eight binary class datasets, and the three multi-
class datasets, all data types are multivariate, and all default
tasks are for classification. The number of instances is from
32 to 8124, and the attributes is from 8 to 39. The missing
rates are quite small. Table 2 summarizes their attribute
information.

We conducted 50 runs of 10-fold cross-validation on each
dataset, which means p = 0.1. Then, missing values were
replaced into the training data by setting q = 0.25 as a
percentage of the labeled data. The value of q was small to
set up because typical semi-supervised learning adds a large
amount of unlabeled data to a small amount of labeled data
for training.

Table 3 lists the results in the ratio of correct classifi-
cations for each dataset. The three methods described in
subsection 4.1 are compared. The asterisks ‘*’ represent
“impute.median” and/or “rfImput.smsupvsd” win “rm.NAs”
on a dataset under a pair-wise t-test with a significance level
of 95%.

The method of removing data containing missing values
(“rm.NAs”) is generally inferior to the other two methods.
This is because of the small sample size of the training data.
Moreover, our method (“rfImput.smsupvsd”) is not always
the best of the three, despite careful consideration. Our
method was best of the three in previous research [11], us-
ing a spam dataset [15] collected at Hoewlett-Packard Labs
and Anderson’s iris dataset. Where the missing values are
artificially produced; the values were randomly dropped.

Our method worked well in these previous situations, such
as missing completely at random (MCAR), or missing at
random (MAR), However, it did not in a situation of not
missing at random (NMAR). In USI repository datasets at
least, missingness tends to incline toward specific variables.
A data-frame and the head portion of “Pittsburgh bridges”
are listed below:

> str(x)

’data.frame’: 108 obs. of 12 variables:
$ V2 : Factor w/ 4 levels "A","M","O","Y": 2 1 1 1 2 1 1 2 1 1 ...

$ V3 : num 3 25 39 29 23 27 28 3 39 29 ...
$ V4 : int 1818 1819 1829 1837 1838 1840 1844 1846 1848 1851 ...

$ V5 : Factor w/ 4 levels "AQUEDUCT","HIGHWAY",..: 2 2 1 2 2 2 1 2 1 2 ...

Table 3: Ratio of correct classification for semi-
supervised datasets

Dataset name rm.NAs impute.
median

rfImput.
unsupvsd

Pittsburgh bridges 0.496 0.581* 0.588*

Credit approval 0.860 0.853 0.853

Cylinder bands 0.693 0.742* 0.740*

Dermatology 0.960 0.964 0.965

Echocardiogram 0.903 0.934* 0.935*

Hepatitis 0.855 0.835 0.836

Horse colic 0.685 0.802* 0.764*

Lung cancer 0.431 0.432 0.432

Mushroom 1.000 1.000 1.000

Post-operative patient 0.622 0.626 0.626

Soybean (Large) 0.786 0.782 0.709

$ V6 : int NA 1037 NA 1000 NA 990 1000 1500 NA 1000 ...
$ V7 : int 2 2 1 2 2 2 1 2 1 2 ...

$ V8 : Factor w/ 2 levels "G","N": 2 2 2 2 2 2 2 2 2 2 ...
$ V9 : Factor w/ 2 levels "DECK","THROUGH": 2 2 2 2 2 2 2 2 1 2 ...

$ V10: Factor w/ 3 levels "IRON","STEEL",..: 3 3 3 3 3 3 1 1 3 3 ...
$ V11: Factor w/ 3 levels "LONG","MEDIUM",..: 3 3 NA 3 NA 2 3 3 NA 2 ...
$ V12: Factor w/ 3 levels "F","S","S-F": 2 2 2 2 2 2 2 2 2 2 ...

$ V13: Factor w/ 7 levels "ARCH","CANTILEV",..: 7 7 7 7 7 7 6 6 7 7 ...

At first glance, we find that attributes “V6” and “V11”
include many missing values indicated as NA. Actually, “V6”
contains 27 NAs of 108 instances; “V11” contains 16 NAs.
As the average missing rate is about 5%, these values are
quite large.

Moreover, some instances contain many NAs as follows.

> x[107:108,]
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

107 O 43.0 1982 HIGHWAY NA NA G <NA> <NA> <NA> F <NA>
108 A 28.0 1986 HIGHWAY NA NA G <NA> <NA> <NA> F <NA>

Such tendencies are also generally the same in other datasets.
Relatively naive “impute.median” succeeds in these environ-
ments or circumstances. We are disappointed that the UCI
machine learning repository do not contain typical semi-
supervised datasets that consist of a few labeled data with
a lot of unlabeled data.

5. CONCLUSIONS
The procedure was extended so that our method could be

applied to all data types. Further, its validity was evaluated
by choosing datasets that contained missing values from the
UCI repository and Titanic data.

Since our method imputed missing x in unlabeled data, a
random forests (RF) model for unlabeled data could also be
built. Therefore, it was possible to use both RF models to-
gether for labeled and labeled data, and a better integrated
RF model by using the two could be built. However, this
model did not work well. No matter how it might adjust the
weights of two models, this integrated RF model was not
able to outperform the single RF model for labeled data.

Since by in unlabeled data is a primal estimate, bx based
on this does not create improvements. Only the effect on bx
that spreads the error of by is caused.

If we consider the omnipresent nature of missingness, i.e.,
a specific variable has many NAs, and/or a specific instance
has a tendency with many NAs, it may be effective to weight
by according to the number of complemented NA(s). Another
method of co-training [17] that applies two basic learners to
train the data source, which uses the most confident unla-
beled data to augment labeled data in the learning process,
may be also effective. We would like to tackle this task in
the future.

Acknowledgments
The author is grateful to three anonymous reviewers for their
constructive comments. This work was supported by Grant-
in-Aid for Scientific Research No. 26350357 and 25350311.

6. REFERENCES

[1] L. Breiman, Random forests, Machine Learning, 45
(1), 5–32, 2001.

[2] L. Breiman, Manual for Setting Up, Using, and
Understanding Random Forest V4.0,
http://oz.berkeley.edu/users/breiman/Using_

random_forests_v4.0.pdf, 2003.

[3] L. Breiman and A. Cutler, Random forests, http://
www.stat.berkeley.edu/~breiman/RandomForests/

updated March 3, 2004.

[4] O. Chapelle and A. Zien, Semi-supervised
classification by low density separation, In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, 57–64, 2005.

[5] CRAN, Package randomForest,
http://cran.r-project.org/web/packages/

randomForest/randomForest.pdf

[6] C. K. Enders, A note on the use of missing auxiliary
variables in FIML-based structural equation models.
Structural Equation Modeling: A Multidisciplinary
Journal, 15, 434-448, 2008.

[7] A. Gelman and J. Hill, Data Analysis Using
Regression and Multilevel/Hierarchical Models,
Cambridge University Press, 2007.

[8] Y. Guo, H. Zhang, and X. Liu. Instance selection in
semi-supervised learning. In proceeding of Advances in
Artificial Intelligence – 24th Canadian Conference on
Artificial Intelligence (Canadian AI 2011), Canada,
2011.

[9] F. E. Harrell Jr., Regression Modeling Strategies with
Applications to Linear Models, Logistic Regression,
and Survival Analysis. Springer. 2001.

[10] F. E. Harrell Jr., Titanic Data,
http://www.stats4stem.org/r-titanic3-data.html,
2002.

[11] T. Ishioka, Imputation of missing values for
semi-supervised data using the proximity in Random
Forests, iiWAS 2012, Bali, 309-312, 2012.

[12] A. Liaw, Missing value imputations by randomForest,
R Documentation,
http://www.stat.ucl.ac.be/ISdidactique/Rhelp/

library/randomForest/html/rfImpute.html

[13] The R Project for Statistical Computing,
http://www.r-project.org/

[14] D. B. Rubin, Multiple imputation for nonresponse in
surveys, New York: Wiley, 1987.

[15] UCI Repository of Machine Learning Databases,
http:

//www.ics.uci.edu/~mlearn/MLRepository.html

[16] G. C. Valls, T. M. Bandos, and D. Zhou,
Semi-supervised graph-based hyperspectral image
classification, IEEE Transactions on Geoscience and
Remote Sensing, 45 (10), 3044–3054, 2007.

[17] J. Xu, H. He, and H. Man, DCPE Co-training for
classification, Neurocomputing, 86, 75–85, 2012.

[18] X. Zhu, Semi-supervised learning literature survey,
TR-1530, University of Wisconsin-Madison
Department of Computer Science, 2005 (last modified
on July 17, 2008).

