
Imputation of Missing Values for Semi-supervised Data
Using the Proximity in Random Forests

Tsunenori Ishioka
The National Center for University Entrance Examinations

2-19-23 Komaba, Meguro-ku
Tokyo, Japan

tunenori@rd.dnc.ac.jp

ABSTRACT
This paper presents a procedure that imputes missing values
by using random forests on semi-supervised data. We found
that the rate of correct classification of our method is higher
than that of other methods: a simple expansion of Liaw’s
“rfImpute” for (un)supervised data and the k-nearest neigh-
bor method (kNN). Our method can handle missing predic-
tor variables as well as missing response variable. An im-
putation that uses random forests for semi-supervised cases
in the training data set has never been implemented until
now.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis; I.2.6 [Artificial Intelligence]: Learning—analogies

General Terms
Algorithms

Keywords
Ensemble learning, data imputation, missing data, k-nearest
neighbor, R, rfImpute, impute.knn

1. INTRODUCTION
A context is a word that has various meanings depending

on the situation and/or topic. In information engineering,
it indicates a situation in which a device is used. Time and
place are typical examples. A user’s profile and purchase
history are also examples. If we can utilize the context, ap-
propriate services can be offered according to the situation;
for example, a mobile phone could recommend nearby shops
to pedestrians. Various sensor information can now be eas-
ily obtained, thanks to innovation. The context information,
however, is often incomplete. In many cases, the versions of
sensors are diverse. Some of the information tends to get
lost in a wireless environment. In fact, complete informa-
tion without missing values is quite rare in the real world.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2012, 3-5 December, 2012, Bali, Indonesia.
Copyright 2012 ACM 978-1-4503-1306-3/12/12 ...$15.00.

The easiest to treat missing values is to “remove” them.
Another way is to make a reasonable inference from the ob-
servations to account for the missing data. Here, we shall
impute missing values by using random forests.

Random forests is a well-known as a substantial modifi-
cation of bagging techniques. It builds a large collection of
de-correlated trees and then averages them. It is mainly
used as an accurate classifier or regression tree. The latest
Fortran77 code by Breiman [4] is Version 5.1, dated 2004.
Version 4 contains modifications and major additions to Ver-
sion 3.3, and it allows one to replace missing predictor values
through two options [3]. One is “missquick” (Ver. 4), which
replaces all missing values by the median of the non-missing
values in their column, if they are real, or by the most numer-
ous value in their column if they are categorical. Another
is “missright” (Ver. 5). This option starts with “missquick”
but then iterates by using proximities and does an effective
replacement even with a large amount of missing data. Miss-
ing values are represented by a proximity weighted sum over
the non-missing values.

Andy Liaw implemented these ideas in statistical environ-
ment R [10], calling them “na.roughfix” and “rfImpute” [8].
These R functions unfortunately cannot be used in semi-
supervised cases [5].

However, Breiman’s ideas can be extended to semi-
supervised data if we can obtain the proximity of the semi-
supervised data, by starting with the rough imputation of
the missing data (“na.roughfix”) and repeatedly getting new
proximities by running random forests. Another imputation
method called “yaImpute” [9], which is an extended ran-
dom forests, is also not allowed for semi-supervised data,
because it devised an experimental way to handle multi-
response variables. In the case of supervised data, Breiman
[3] found that the estimation error of the bootstrap training
sample (called “out-of-bag”, or oob) tends to be optimistic
when random forests is run on a data matrix with imputed
values.

In this paper, we present a procedure for properly im-
puting missing values, that can avoid overfitting of the es-
timated model for semi-supervised data. In Section 2, we
summarize the elements of a technique that imputes the
missing values for semi-supervised data. In Section 3, we
show the new procedure for imputing them. Section 4 illus-
trates two examples, iris and spam data sets. We assume
these data to be semi-supervised by ignoring part of the re-
sponse variables; nevertheless, both are supervised. Section
5 concludes the paper.

2. RFIMPUTE
2.1 Proximity measure

The (i, j) element of the proximity matrix produced by
a random forest is the fraction of trees in which elements
i and j fall on the same terminal node. The intuition is
that “similar” observations should be on the same terminal
nodes more often than dissimilar ones. The proximity ma-
trix can be used to identify structures in the data and for
semi-supervised learning with random forests.

2.2 R procedure
Missing values are indicated by NAs in R [10]. A func-

tion returning a result of random forests is “randomForest,”
developed by Liaw [8]. The algorithm starts by imputing
NAs by using “na.roughfix.” Then, “randomForest” is called
with the completed data. The proximity matrix output from
the “randomForest” is used to update the imputation of the
NAs. For continuous predictors, the imputed value is the
weighted average of the non-missing observations, where the
weights are the proximities. For categorical predictors, the
imputed value is the category with the largest average prox-
imity. This process is iterated a few times.

3. NEW PROCEDURE
3.1 Missing value replacement for the train-

ing set
Our procedure, as well as Liaw’s “rfImpute,”has two ways

of replacing missing values. The first way is fast. If the mth
variable is not categorical, the method computes the median
of all values of this variable in class j; then it uses this value
to replace all missing values of the mth variable in class j. If
the mth variable is categorical, the replacement is the most
frequent non-missing value in class j. These missing values
are replaced or filled by “na.roughfix.”

The second way of replacing missing values is computa-
tionally more expensive but performs better than the first,
even with large amounts of missing data. It begins by doing
a rough and inaccurate filling in of the missing values. The
key technique is to estimate the missing values on the basis
of not all non-missing proximities but the k-nearest prox-
imities, which include missing data. Then, it runs a forest
procedure and computes the proximities.

If x(n, m) is a missing continuous value, we estimate its fill
as an average over the k-nearest neighbor values of the mth
variables weighted by the proximities between the nth case
and the other case. If it is a missing categorical variable,
we replace it by the most frequent non-missing value, where
the frequency is weighted by proximity.

In summary, in the case of a missing continuous value, we
use

bx(n, m) =

X

i!=n;i∈neighbor

prox(i, n)x(i, m)

X

i!=n;i∈neighbor

prox(i, n)
(1)

instead of rfImpute’s

bx(n, m) =

X

i!=n;i∈non-missing

prox(i, n)x(i, m)

X

i!=n;i∈non-missing

prox(i, n)

where prox(·, ·) is the proximity.
In the case of a missing categorical variable, we use

bx(n, m) = argmax
Cm

X

i!=n

prox(i, n), (2)

instead of

bx(n, m) = argmax
Cm

X

i!=n

i∈non-missing

prox(i, n),

where Cm means the mth categorical variables.
Now, we iteratively construct a forest again by using these

newly filled-in values, find new fills, and iterate again. Our
experience is that 4–6 iterations are enough.

The reason we use only k-nearest neighbor data in (1)
is that it makes the missing data imputation statistically
robust. Even if the proximities to the target are rather short,
other continuous values might be outlying. In this case,
some outliers will push the estimate of the target in the
wrong direction. Our numerical investigation shows that our
procedure, a mixture of kNN and random forests, is better
than using only random forests.

In (2), however, all data besides k-nearest neighbor data
are treated. Because majority votes are used in (2), any
outlying values of x would be ignored. While, we should not
ignore the proximity associated with missing data, especially
when the missing rate is high.

3.2 Algorithm
Semi-supervised learning ought to treat missing response

variable (y) as a training data set. Since our method is for
the purpose of immediate imputation of missing data, both
predictor variables (x) and response variable (y) can include
missing values. Semi-supervised learning, which includes
large amounts of missing predictor variables (x) and miss-
ing response variables (y), has a potential to cover the real
world data considerably. The good semi-supervised learning
method gives us many benefits. Our procedure is as follows.

1. By starting with a rough imputation of missing pre-
dictor variables (x), we estimate the missing response
variable (ŷ) by running the random forests algorithm.

2. We replace the missing predictor variables (x̂) by us-
ing the proximities between cases and estimate the re-
sponse variable (ŷ).

3. If the imputed values (x̂) converge, we output them
(x̂, ŷ).

We call this procedure “rfImput.smspvsd,” which means
“an imputation method using random forests for semi-
supervised learning.” We found that iterating 2 does not
produce a significant improvement.

Our R program can be viewed at http://www.rd.dnc.ac.
jp/~tunenori/rfImpute.html .

4. NUMERICAL EXAMPLES

4.1 E-mail database indicating spam or non-
spam

We used a spam data set [11] collected at Hewlett-Packard
Labs, which classifies 4601 e-mails as spam or non-spam. In
addition to this class label, there are 57 variables indicating

the frequency of certain words and characters in the e-mail.
That is, a data frame had 4601 observations and 58 variables.
The first 48 variables contain the frequency of the variable
name (e.g., business) in the e-mail. If the variable name
starts with num (e.g., num650), it indicates the frequency
of the corresponding number (e.g., 650). Variables 49–54 in-
dicate the frequency of the characters “;”, “(”, “[”, “!”,“$”, and
“#”. Variables 55–57 contain the average, longest, and total
run-length of capital letters. Variable 58 indicates the type
of mail and is either “nonspam” or “spam,” i.e., unsolicited
commercial e-mail.

The data set contains 2788 e-mails classified as“nonspam”
and 1813 classified as “spam.” The “spam” concept is di-
verse: advertisements for products/web sites, make money
fast schemes, chain letters, pornography, and so on. This
collection of spam e-mails came from the collectors’ post-
master and individuals who had filed spam. The collection
of non-spam e-mails came from work and personal e-mails,
and hence, a personal name like “george” or an area code like
“650” is an indicator of non-spam. We had to partially blind
the spam/non-spam indicator, because we want to focus on
semi-supervised data in this numerical experiment.

To evaluate the performance of “rfImput.smspvsd,” we
compared it with the following two methods.

1. Liaw’s “rfImpute” [5]: Since “randomForest” does not
work for any y that includes missing responses, “rfIm-
pute” functions as well. Therefore, we configured the
forest model for non-missing response cases (y) by us-
ing “rfImpute” to obtain imputed predictor variables
(x̂). Using this model, we estimated the response val-
ues (ŷ) for their missing y.

2. kNN [7]: We started the rough imputation of x̂ for y
that were not missing, and configured a training kNN
model with them. Using this model, we estimated the
response values (ŷ) for their missing y.

Semi-supervised as well as supervised learning predict or
estimate y from x. Therefore, as a criterion for evaluating
the performance of learners, we used precision, that is, the
rate of the correct classifications.

The values of 57 variables and response variable were ran-
domly dropped. The missing values rates were 5%, 10%,
20%, 30%, 40%, 50%, and 60% both. Even at a low miss-
ing data rate, e.g., 5%, a complete case, which does not
include missing data, is rare; the occurrence probability is
only (0.95)57 ≈ 0.0537. The missing data rate of 10% in
turn, yields an occurrence of 0.00246. If we use only com-
plete cases by removing missing data, almost all cases should
be avoided.

Figure 1 shows the average of the results of three methods
run three times each. A larger value on the vertical axis
indicates better performance. A value of 1 means that all
missing y are correctly predicted.

In general, the higher the missing data rate on the hor-
izontal axis is, the smaller the value on the vertical axis
becomes. Because of the randomization of the missing data,
the lines on the graph do not always decrease monotonously.
Nevertheless, our method (“rfImput.smspvsd”) is the best of
the three, irrespective of the missing data rate. Moreover,
kNN is the worst because observations in high-dimensional
spaces tend to be dissimilar to each other as a result of the
“curse of dimensionality.” In particular, the advantage of our

0.1 0.2 0.3 0.4 0.5 0.6

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Missing rate

R
at

e
of

 th
e

co
rre

ct
 c

la
ss

ifi
ca

tio
ns

rfImput.smspvsd
rfImpute
kNN

Figure 1: Correct classification for semi-supervised
spam/non-spam data

method over the others is remarkable for the high missing
data rates, e.g., 60%.

4.2 Edgar Anderson’s iris data
The next example is the famous Fisher’s or Anderson’s

iris data set, which gives measurements in centimeters of the
variables sepal length and width and petal length and width,
respectively, for 50 flowers from each of three species of iris.
The species are “Iris setosa,”“versicolor,” and “virginica” [1].
In R, “iris” is a data frame with 150 observations and 5
variables.

This data set was used as an example of discriminant anal-
ysis by Fisher, and it is a typical test case for many classifica-
tion techniques in machine learning. Note that the data set
only contains two clusters with a rather obvious separation.

One of the clusters contains Iris setosa, while the other
cluster contains both Iris virginica and Iris versicolor and is
not separable without the species information Fisher used.

The three methods were investigated within the same
framework as in the previous experiment for spam/non-
spam. Here, we shall pretend that iris spaces (5th variable)
are not partially measured. Figure 2 shows the results of
three runs.

Identical data sets corresponding to the missing rate were
used to evaluate the three methods. Our method (“rfIm-
put.smspvised”) was the best of the three, irrespective of
the missing data rate. The kNN method performed fairly
well because of the few dimension of the iris data.

Whereas the experiment on the spam data involved al-
ternatives, the one on iris data involved a threefold choice.
Therefore, the decreases for the iris data (Fig. 2) are sharper
than those of spam data (Fig. 1).

Typically, semi-supervised learning adds a large amount
of unlabeled data to a small amount of labeled data for train-
ing. That is, the missing rate of the responses (y) should be
large compared with that of the predictors (x). Hence, we
set the missing rate of y to be 90% and performed the same

0.1 0.2 0.3 0.4 0.5 0.6

0.
7

0.
8

0.
9

1.
0

Missing rate

R
at

e
of

 th
e

co
rre

ct
 c

la
ss

ifi
ca

tio
ns

rfImput.smspvsd
rfImpute
kNN

Figure 2: Correct classification for semi-supervised
iris data

experiment as we did on the spam/non-spam data.
Figure 3 shows the results. Since the missing data struc-

ture depends on a seed of the randomization, the rate of cor-
rect classifications does not always decrease monotonously.
Despite the lack of monotonicity, the relative relationship of
the three is not different from Fig. 2; our method is superior
to the other methods, and kNN is the worst. Note that the
degradation in performance with our method is relatively
small compared with the other methods.

The experiments were not performed using iris data be-
cause the sample size is too small, only 150, to apply semi-
supervised learning.

5. CONCLUSIONS
In case of context-aware services, we set the response vari-

ables to the services to be provided, and the explanatory
variables to the context information statistics. Usually, the
explanatory variables contain some missing data. It is obvi-
ous that missing at random (MAR)[6], wherein the missing
depends on only observations and not non-observations, is
superior to missing completely at random (MCAR), wherein
the missing does not depend on the variables in the assumed
model. Random forests is subject to the MAR assumption,
so it gives better results than those of conventional methods
such as kNN.

Moreover, our method does not take account of the effects
on data selection biases, because all cases or obtained data
are used as they are. The situation or condition under which
the complete data are obtained is often restricted. We hope
that our method will be used by many researchers in the
future.

6. ACKNOWLEDGMENTS
This work was supported by a Grant-in-Aid for Scientific

Research No. 21300320 given to Tsunenori Ishioka.

0.1 0.2 0.3 0.4 0.5 0.6

0.
70

0.
75

0.
80

0.
85

0.
90

Missing rate

R
at

e
of

 th
e

co
rre

ct
 c

la
ss

ifi
ca

tio
ns

rfImput.smspvsd
rfImpute
kNN

Figure 3: Correct classification after conducting
semi-supervised learning on spam/nonspam data
(90% missing for responses)

7. REFERENCES
[1] R. A. Becker, J. M. Chambers and A. R. Wilks, The

New S Language. Wadsworth & Brooks/Cole, 1988.
[2] L. Breiman, Random Forests, Machine Learning, 45

(1), 5–32, 2001.
[3] L. Breiman, Manual for Setting Up, Using, and

Understanding Random Forest V4.0,
http://oz.berkeley.edu/users/breiman/Using_
random_forests_v4.0.pdf, 2003.

[4] L. Breiman and A. Cutler, Random Forests, http://
www.stat.berkeley.edu/~breiman/RandomForests/
updated March 3, 2004.

[5] CRAN, Package randomForest,
http://cran.r-project.org/web/packages/
randomForest/randomForest.pdf

[6] A. Gelman and J. Hill, Data Analysis Using
Regression and Multilevel/Hierarchical Models,
Cambridge University Press, 2007.

[7] k-Nearest Neighbour Classification, R Documentation,
knn {class}, http://stat.ethz.ch/R-manual/
R-patched/library/class/html/knn.html

[8] A. Liaw, Missing Value Imputations by randomForest,
R Documentation,
http://www.stat.ucl.ac.be/ISdidactique/Rhelp/
library/randomForest/html/rfImpute.html

[9] C. L. Nicholas and F. O. Andrew, yaImpute: An R
Package for kNN Imputation, Journal of Statistical
Software, 23 (10), Jan 2008.

[10] The R Project for Statistical Computing,
http://www.r-project.org/

[11] UCI Repository of Machine Learning Databases,
http:
//www.ics.uci.edu/~mlearn/MLRepository.html

